Advanced Algebra Unit 8 Review

Part 1: No Calculator

Graph the function.

1.
$$y = 2(3)^{x+1} - 5$$

37	T 7		•		•	*						٠	10			•	*		*				•
X	Y		*		*	*	*	*	*		*	*	t		*	*	*	*	*	*	٠	*	•
			•		•	•			•				1		•	•			•				•
			•		•	•			•				Ť						•				•
			*		•	*	*		•		•	*	î			•	*		•			*	•
			•		•	•	*		*		•	*	1		*	*	*		*			*	•
			•		•				•				1						•				
			*		•	*	*		*	۰	•	*	t		*	*	*		•		•	*	*
			*		*		*		*		•	*	2		*	*	*		•				*
			*		•	*	*		*	۰	۰	*	t		*	*	*		*			*	*
			-10	+	'	+		-		+	+	+	+	•		'	+	-	+	+	+	•	10
			*		•	*	*		*	•	•	*	t		*	*	*		•		•	*	*
			•		•	•	*		*			*	-2-			*	*	٠	*	*	۰		*
			•		•	•	*		*		•	*	1		*	•	*		*		•	*	•
					•				•				1						•				
			*		*	*	*		*		*		1		*	*	*	*	*			*	•
			*		*	*	*		*		٠	*	-5-		*	*	*	۰	*		۰	٠	•
					•		*		*				t				*		•				•
		1	*		۰				•				*										•

Domain:

Range:_____

Asymptote:	

- 3. Use $y = (.92)^x$ to answer the following:
 - a. What is the starting amount?
 - b. Is this a Exp Growth or Exp Decay? Why?_____
 - c. What is the rate/percent?_____
 - d. Rewrite as a log function:
- 4. Rewrite the expression in exponential form.
- a. $\log_{16} 4 = \frac{1}{2}$ b. $\ln x = 3$

Name: ______ Period: _____

2. $y = \log_6 x$

						• •				. 10.			*				•		•
X	Y																•		:
						• •													
				*	*	• •	•		•		•	*	*		•	•	•	*	•
				٠	٠	• •	•	*	*	0 2.	٠	٠	*		٠	*	*	*	*
		_																	
		4	•											-					10
				*	*	• •		٠	٠	· 2·	 ٠	٠	*	*	٠	*	٠	*	*
					•														
			•	*	٠	• •		٠	*				*			٠	*	*	
						• •	•	1			•				•	1			
										-10									
Dom Rang Asyr	ain:	:							_	-									

5. Expand the expressions

a.
$$\log \frac{2x^3}{5}$$
 b. $\ln \frac{3\sqrt{x}}{y^5 z}$

6. Condense the expressions

a.
$$\log_3 4 + \log_3 2 + \log_3 2$$

b. $\log 3 + \frac{1}{2}\log x - \log 5$

- 7. Evaluate or solve for x.
- a. $\log_5 125$ b. $\log_{36} 6$ c. $\log_4 1$ d. $\log_3 \frac{1}{27}$

e. $\ln e^{12}$ f. $\log_5 x = -2$ g. $\log_{\frac{1}{3}} x = 3$

8. Explain the difference between a common logarithm and a natural logarithm.

Part 2: Calculator

9.	From	1990 to	2000,	the populat	on of	California	can b	e modeled	by P =	27,216,0	000(1.0	$(228)^{t}$
whe	re t is	the num	iber of	years since	1990							

a. Estimate the population in 2004.

b. When will California reach 40,000,000?

c. Will this trend continue forever? Explain._____

10. You buy a new car for \$22,500. The value of the car decreases by 25% each year.

a. Write an exponential model giving the car's value V (in dollars) after t years.

b. What is the value of the car after 3 years?

c. In how many years is the car worth \$5300 (must show algebraic work and be accurate to 2 decimal places)?

a. quarterly

b. continuously

12. Your goal is to have \$11,000 to buy a used car in 2 years. How much would you need to deposit today if your account pays 4.5% annual interest, compounded monthly?

13. What is *e* approximately equal to (accurate to three decimal places)? Is *e* rational or irrational? Explain.

14. Why is $\log_2(-6)$ not possible? Why can't you take a logarithm of a negative number? Use complete sentences.

15. Evaluate the logarithm. Round answer to 3 decimal places

a. $\log_5 1.25$ b. $\log_{\frac{1}{3}} 0.0005$ c. $\ln 24$

16. Solve the exponential equation. Check for extraneous solutions. Round the result to 3 decimal places if necessary.

a. $3e^{3x} = 12$ b. $10^{-x+4} + 7 = 5$

c. $9^{2x} = 3^{2x+4}$ d. $5^{0.5x} + 12 = 21$

17. Solve the logarithmic equation. Check for extraneous solutions. Round the result to 3 decimal places if necessary.

a. $\log_2(3x-1) = 8$ b. $\ln(3x-3) = \ln(x+15)$

c. $4 + \log_9(3x - 7) = 6$ d. $\log_4 x + \log_4(5x - 2) = 2$

- 18. The pH of a patient's blood can be calculated using the Henderson-Hasselbach Formula, $pH = 6.1 + \log \frac{B}{C}$, where B is the concentration of bicarbonate and C is the concentration of carbonic acid. The normal pH of blood is approximately 7.4.
- a. Expand the right side of the formula.
- b. Find the pH of blood that has bicarbonate concentration of 38 and carbonic acid concentration of 2