Enrichment: Even and Odd Functions

EVEN Function: f(-x) = f(x)

- If you plug in (-x) it simplifies to the **original** function
- Symmetry to the Y-Axis: Folds over the Y-Axis

ODD Function: f(-x) = -f(x)

- If you plug in (-x) it simplifies to the **opposite** of the original function
- Symmetric about the Origin: Rotates 180° around the origin

NEITHER:

b)

- f(-x) doesn't simplify to anything special related to f(x)
- Most functions are neither even nor odd

Directions:

- a) Find f(-x) and simplify to prove whether each function is even, odd, or neither.
- b) If the function is even or odd, state the symmetry. If neither, graph the function on your calculator and state whether or not it has line or rotational symmetry.

b)

1.
$$f(x) = 3x^5 - 2x$$

a)
2. $g(x) = -2x^2 + 3x$
a)

3.
$$h(x) = 4x^4 - 3$$

a) 4. $j(x) = \frac{3}{x}$
a) a)

Patterns: Look back at the functions that were all even. Do their equations have anything in common? What about the functions that were all odd? Now look at the neithers.

• Do you see relationship between the equation and whether the function is even or odd?

- How can you tell if a function will be neither by looking at its equation?
- Write your own function equation that will be: Even Odd Neither