SHOW ALL WORK.

Complete Parts A & B OR Parts B & C

PART A:

- a) identify the parent function
- b) describe any transformations (reflection, scale, translation)
- c) write the rule

1.
$$y = (x-3)^2$$
 2. $y = 5|x|$

2.
$$y = 5|x|$$

3.
$$y = 2 + \sqrt{x}$$
 4. $y = -x$

4.
$$y = -x$$

PART B:

- a) identify the parent function
- b) describe any transformations (reflection, scale, translation)
- c) write the rule

5.
$$y = -2|x-7|$$

5.
$$y = -2|x-7|$$
 6. $y = \sqrt{x+8}-3$ **7.** $y = 5x-4$ **8.** $y = -(x+4)^2-1$

7.
$$y = 5x - 4$$

8.
$$v = -(x+4)^2 -$$

9. Write an equation for the parent function $y = x^2$ being translated 3 units right and 8 units down.

10. Write an equation for the parent function $y = \sqrt{x}$ being translated 5 units up and being reflected over the x-axis.

11. Write an equation for the parent function y = |x| being vertically stretched by a factor of 2 and being translated 7 units left.

12. Graph
$$y = -3|x| + 2$$

13. Graph
$$y = -\sqrt{x+2} - 4$$

PART C:

14. Is it true in general that |x+h| = |x| + |h|? Justify your answer by considering how the graphs of y = |x+h| and y = |x| + |h| are related to the graph of y = |x|.

15. A hiker walks up and down a hill. The hill has a cross section that can be modeled by $y = -\frac{4}{3}|x-300|+400$ where x and y are measured in feet and $0 \le x \le 600$. How far does the hiker walk?

Homework 2.4 Answers

1a.
$$y = x^2$$

1b. translation 3 units right

1c. $(x, y) \rightarrow (x+3, y)$

2a.
$$y = |x|$$

2b. vertical stretch by a factor of 5

2c. $(x, y) \rightarrow (x, 5y)$

3a.
$$y = \sqrt{x}$$

3b. translation 3 units up

3c. $(x, y) \rightarrow (x, y+2)$

4a.
$$y = x$$

4b. reflection over the x-axis

4c. $(x, y) \to (x, -y)$

5a.
$$y = |x|$$

5b. translation 7 units right, reflection over the x-axis, vertical stretch by a factor of 2. **5c.** $(x, y) \rightarrow (x+7, -2y)$

6a.
$$y = \sqrt{x}$$

6b. translation 8 units left and 3 units down.

6c. $(x, y) \rightarrow (x-8, y-3)$

7a.
$$y = x$$

7b. translation 4 units down, vertical stretch by a factor of 5.

7c. $(x, y) \rightarrow (x, 5y - 4)$

8a.
$$y = x^2$$

8b. translation 4 units left and 1 unit down, reflection over the x-axis.

8c. $(x, y) \rightarrow (x-4, -y-1)$

9.
$$y = (x-3)^2 - 8$$

10.
$$y = -\sqrt{x} + 5$$

11.
$$y = 2|x+7|$$

13.

14. No, the graph of y = |x + h| is the graph of y = |x| with a horizontal translation. The graph of y = |x| + |h| is the graph of y = |x| with a vertical translation. If the graphs are different, then these expressions are not equal.

15. 1000 feet