| SHOW ALL WORK.       |        |
|----------------------|--------|
| Systems of Equations | Period |
| Homework #3          |        |
| Advanced Algebra     | Name   |

Complete Parts A & B, OR Parts B & C

## PART A:

Solve the system of equations

| <b>1.</b> $3x + 2y = 10$ | <b>2.</b> $2x - 3y = -1$ | <b>3.</b> $3x + 2y = 4$ |
|--------------------------|--------------------------|-------------------------|
| 5x - 2y = 6              | -2x + 3y = -19           | 6x - 3y = -27           |

## PART B:

Solve the system of equations

| <b>4.</b> $6x - 2y = 5$ | <b>5.</b> $6x - 3y = 15$ | <b>6.</b> $3x - y = 2$ |
|-------------------------|--------------------------|------------------------|
| -3x + y = 7             | y = 2x - 5               | 6x + 3y = 14           |

| 7. $3x + 7y = -1$ | <b>8.</b> $4x - 3y = 8$ |
|-------------------|-------------------------|
| 2x + 3y = 6       | -8x + 6y = 16           |

Graph the linear system and estimate the solution. Then check the solution algebraically.



For problems #11-13, do the following:

a) Define the variables

b) Write the system of equations

c) Solve for all variables/Answer the question

**11.** A total of 600 tickets were sold for a concert. Twice as many tickets were sold in advance that were sold at the door. If the tickets sold in advance cost \$25 each and the tickets sold at the door cost \$32 each, how much money was collected for the concert?

a) b) c)

**12.** Chase and Sara went to the candy store. Chases bought 5 pieces of fudge and 3 pieces of bubble gum for a total of \$5.70. Sara bought 2 pieces of fudge and 10 pieces of bubble gum for a total of \$3.60. How much does 1 piece of fudge (f) and 1 piece of bubble gum(g) cost?

a) b) c)

**13.** At McDonalds four cheeseburgers and three medium fries have a total of 2290 calories. Six cheeseburgers and two medium fries have 2560 calories. How many calories does each item contain?

a) b) c)

## PART C:

Solve the system of equations

**14.** 5x - 3y = -32x + 6y = 0

15. Find the values of r, s, and t that produce the indicated solution(s).

-3x - 5y = 9rx + sy = t

a) No solution

**b)** Infinitely many solutions **c)** A solution of (2, -3)