8.4 Logarithms and Logarithmic Functions

- I can graph a logarithmic function
- I can evaluate logarthims
- I can rewrite into logarithmic or exponential forms

Logarithmic functions are <u>inverse</u> of exponential functions. X and y values are interchanged.

exponential $v=3^{x}$

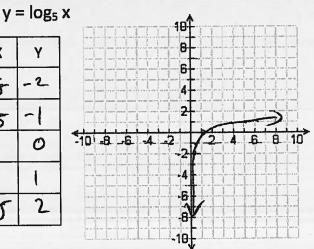
logarithmic $x = 3^{y}$

 $(y = log_3 x)$

X	Y
-2	Ya
-1	1/3
0	1
1	3
2	9

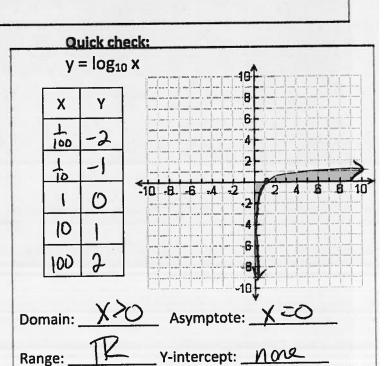
X Υ -2 -1 3 1 2

Vertical asymptote
for log functions


Logarithmic form: $log_b a = 0$

Exponential form: $b^c = a$

The expression $log_b y$ is read as "log base b of y."


Ex 1: Graph the following logarithmic functions.

X Y 工 -2 0

Domain: X > 0 Asymptote: X = 0Y-intercept: None

XInt. _

Logarithmic form: log_b a = c

Exponential form: $b^c = a$

logs equal the exponent

natural log: 1n

common log: 100

base is _____

base is 10

Ex 2: Rewrite in logarithmic form.

b.)
$$v = e^{5}$$

c.)
$$10^4 = 10,000$$

Ex 3: Rewrite in exponential form.

a.)
$$log_4 x = 3$$

b.)
$$\log 4 = y$$

c.)
$$\ln e = z$$

Do and Discuss:

Which of the following is equivalent to $2^5 = 32$?

Write $5^3 = 125$ in logarithmic form.

$$log_5 2 = 32$$

$$\log_{32} 5 = 2$$

Which of the following is equivalent to $log_4 16 = x$?

Write $log_2 64 = 6$ in exponential form.

$$4^{16} = x$$

Ex 4: Evaluate the following logarithms without a calculator.

4?=1/4