Period _____

SHOW ALL WORK.

Complete Parts A & B OR Parts B & C

PART A:

Graph the function.

1.
$$y = 4\cos x$$

2. $y = \sin x + 3$

3. $f(x) = \sin(x + 90^\circ)$

4. $y = -\sin x + 2$

PART B:

Identify the amplitude and period of the function.

5. Amplitude: ____ Period: ____

6. Amplitude: ____ Period: ____

7. Amplitude: ____ Period: ____

Graph the function.

$$8. \quad f(x) = \sin 4^{\circ} x$$

9.
$$y = 5\sin(x - 270^\circ)$$

10.
$$y = -2\cos\frac{1}{4}x$$

11.
$$f(x) = -\cos(x+180^\circ)+1$$

- 12. Write an equation for a sine function with an amplitude of 4 and a period of 2.
- 13. The motion of a certain pendulum can be modeled by the function $d = 4\cos 180^{\circ}t$ where d is the pendulum's horizontal displacement (in inches) relative to its position at rest and t is the time (in seconds). Graph the function. What is the greatest horizontal distance the pendulum will travel from its position at rest?

PART C:

Graph the function.

$$14. \quad y = \frac{\pi}{4} \cos x$$

15.
$$y = -\cos 2x - 2$$

16.
$$y = \cos \frac{2}{5}x$$

- 17. In a particular region, the population C of coyotes (the predator) and the population R of rabbits (the prey) can be modeled by: $C = 9000 + 3000 \sin 15^{\circ}t$ and $R = 20,000 + 8000 \cos 15^{\circ}t$ where t is the time in months.
- a. Determine the ratio of rabbits to coyotes when t = 0, 6, 12 and 18 months.
- b. Graph both functions together on your graphing calculator. Make a sketch of what you see.
- c. Use the graphs to explain how the changes in the two populations appear to be related.
- 18. A buoy oscillates up and down as waves go past. The buoy moves a total of 3.5 feet from its low point to its high point, and then returns to its high point every 6 seconds.
- a. Write an equation that gives the buoy's vertical position y at time t if the buoy is at its highest point when t = 0.
- b. Explain why you chose a cosine function instead of a sine function for the equation in part a.
- 19. The motion of a spring can be modeled by $y = A \cos kt$ where y is the spring's vertical displacement (in feet) relative to its position at rest, A is the initial displacement (in feet), k is a constant that measures the elasticity of the spring, and t is the time (in seconds).
- a. Suppose you have a spring whose motion can be modeled by the function $y = 0.2 \cos 6t$. Find the initial displacement and the period of the spring. Then graph the given function.
- b. If a damping force is applied to the spring, the motion of the spring can be modeled by the function $y = 0.2e^{-4.5t} \cos 4t$. Graph this function. What effect does damping have on the motion?

Unit 6.6 Homework Answers

1. $y = 4\cos x$

2. $y = \sin x + 3$

3. $f(x) = \sin(x + 90^\circ)$

4.
$$y = -\sin x + 2$$

PART B:

Identify the amplitude and period of the function.

- 5. Amplitude: 3
- Period: /80°
- 6. Amplitude: 2 Period: 90°
- 7. Amplitude: 4
- Period: **720**°
- 8. $f(x) = \sin 4^{\circ} x$

9. $y = 5\sin(x - 270^\circ)$

10. $y = -2\cos\frac{1}{4}x$

11. $f(x) = -\cos(x+180^\circ)+1$

12. $y = 4 \sin 180x$ or $y = -4 \sin 180x$

13.

8 inches

 $14. \quad y = \frac{\pi}{4} \cos x$

15. $y = -\cos 2x - 2$

16.
$$y = \cos \frac{2}{5}x$$
 Period = 900°

17a. Determine the ratio of rabbits to coyotes when t = 0, 6, 12 and 18 months.

$$\frac{28}{9}$$
 $\frac{5}{3}$ $\frac{4}{3}$ $\frac{10}{3}$

b. Graph both functions together on your graphing calculator. Make a sketch of what you see.

c. Use the graphs to explain how the changes in the two populations appear to be related.

When # of coyotes increases, the number of rabbits decreases.

When # of cogotes decrease, the subbit population increases.

18a. Write an equation that gives the buoy's vertical position y at time t if the buoy is at its highest point when t = 0.

b. Explain why you chose a cosine function instead of a sine function for the equation in part a.

The Maximum height is when t=0.

19 a. Suppose you have a spring whose motion can be modeled by the function $y = 0.2 \cos 6t$. Find the initial displacement and the period of the spring. Then graph the given function.

67 D. 2

b. If a damping force is applied to the spring, the motion of the spring can be modeled by the function $y = 0.2e^{-4.5t} \cos 4t$. Graph this function. What effect does damping have on the motion?

The Function is no longer periodic.