6.4 Radian Angle Measures

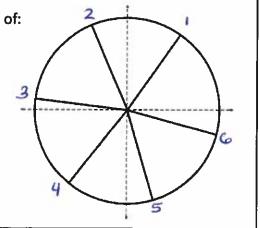
ACTIVITY:

- 1. You & your partner will need ONE narrow strip of paper, a paper plate, and a writing utensil.
- 2. Flatten your paper plate as best you can.
- 3. Find the center of your paper plate. Draw a point marking the center.
- 4. Mark one end of your strip with 0. Place this end at the plate's center. Measure the radius of the paper plate and draw a line on your strip showing this distance. Cut/tear your strip here so it measures one radius.
- 5. Make a tic mark on the edge of your paper plate and label it 0. This will be your starting point. Line up the 0 end of your strip at this point and wrap the strip around your plate.
- 6. On the plate, make a tic mark where the strip ends. Then move the 0 end of your strip to this point and repeat until you make it around the plate. Do NOT make any new tic marks past your initial starting point.
- 7. Each tic mark represents the distance of your paper plate's radius. About how many radii (to the nearest tenth or hundredth) go around your plate? 6-6.5
- 8. Let's compare... about how many radii wrapped around our plates? <u>\$\sigma 6.28\$</u> er 6.25

WHY??? (circumference = 2TTr)

9. Draw lines from the center of your plate to your tic marks. Use your paper strip as a straight edge.

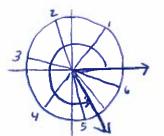
VOCABULARY

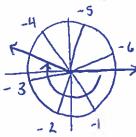

Radian: An <u>angle</u> measurement that is a ratio of:

arc length radius

1 Radian creates an \bigcirc the length of $\boxed{1}$ radius.

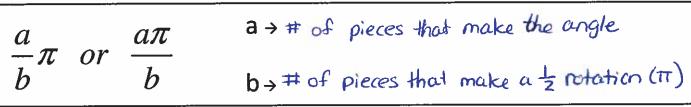
Radians in a FULL Rotation: 2TT & 6.28


Radians in a HALF Rotation: TT & 3.14


Draw the given angle. Be sure to always draw angles in standard position.

1. 2.5 radians

2. 5.25 radians


3. -3.5 radians

Let's get away from those decimals and use radians in terms of pi.

8 Wedges	12 Wedges	6 Wedges
1 Wedge = 4 Radians	1 Wedge = Radians	1 Wedge = 3 Radians
Examples: $\frac{3\pi}{4}$	Examples:	Examples: $\frac{2\pi}{3}$
711 4	7π 6	<u>\$17</u>
<u>-Sπ</u> μ	- <u>II</u> T	-4 <u>m</u>

KEY CONCEPT:

Sketch the following angles, then find

a) reference ∠

c) - coterminal
$$\angle$$

$$4. \qquad -\frac{7}{2}\pi$$

6.
$$\frac{3}{8}\pi$$

$$7. \qquad -\frac{9}{5}\pi$$

a. The b. The control of the control