6.1 Right Triangle Trigonometry

- I can identify and use the 6 trigonometric ratios
- I can solve a right triangle

VOCABULARY

Trigonometry – From Greek "Trigon" meaning <u>triangle</u> and "metron" meaning <u>Measure</u>

Trigonometric Ratio – a ratio of <u>Sido</u> <u>lengths</u> in a right triangle.

Solving a Right Triangle – finding all the unknown <u>Side</u> lengths and <u>angle</u> measures.

Pythagorean Theorem – <u>A² + b² = C²</u> where <u>a + b</u> and <u>leas</u> + C is happenage.

There are 6 trigonometric ratios. We learned sine, cosine and tangent in Geometry. Remember SohCahToa?

The 3 other ratios are cosecant, secant and cotangent. They are <u>YRCIDYOCALS</u> of the original three

$\sin\theta = \frac{\text{OPP}}{\text{hyp}}$	$ csc\theta = \frac{1}{Sin \Theta} $	$\csc\theta = \frac{\lambda}{\rho}$
$\cos\theta = \frac{adi}{Mp}$	$\sec \theta = \frac{1}{\cos \theta}$	$\sec\theta = \frac{hyp}{adj}$
$\tan \theta = \frac{OPP}{Odj}$	$cot\theta = \frac{1}{\tan \theta}$	$\cot\theta = \frac{adi}{OPP}$

Ex 1: Evaluate the 6 trigonometric ratios of the angle θ if a = 4 and c = 7.

 $\sin \theta = \frac{4}{7}$

 $\cos \theta = \frac{\sqrt{33}}{7}$

 $\tan \theta = \frac{4}{\sqrt{33}} = \frac{4\sqrt{3}}{33}$

 $\cot \theta = \frac{\sqrt{33}}{4}$

Pythog: 42+6=7

 $b = \sqrt{33}$

Ex 2: Let θ be an acute angle in a right triangle. Find the value of the other 5 trig ratios of θ if $\sec \theta = \sqrt{5}$.

$$\sin\theta = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

$$\cos\theta = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

$$\tan \theta = \frac{2}{1} = 2$$

$$\frac{\sqrt{5}}{2}$$

$$\sec \theta = \frac{\sqrt{5}}{1} = \sqrt{5}$$

$$\cot \theta = \frac{1}{2}$$

Using trig ratios to find missing side lengths:

Ex 3: Rachel is standing 5 meters from the base of a flagpole. She looks up to the top of the flagpole at an angle of 25°. If Rachel's eyes are 1.25 meters above the ground, how high is the top of the flagpole? Round to hundreths.

$$X = 5 \cdot (4663)$$

Inverse trig ratios:

Use an inverse ratio when you want to know the angle that has a given Hig ratio

Notation: sin⁻¹(.5) means what <u>and</u> has a sine ratio of .5?

On your calculator: Press 2nd sin (.5) What angle has a sine of .5? 30°

Ex 4: You are standing 12 feet from the base of a tree that is 10 feet tall. At what angle are you looking up at the tree? (This is called the "angle of elevation" – the angle measured up from the horizontal)

*Hint – you are looking for the angle that has what trig ratio?

* Use tangent

* what angle has a tan of 12? tan-1 (10/12) ~ (39.8°)

Quick Check

Solving Right Triangles

Use the Pythagorean Theorem, trig and inverse trig to find all missing sides and angle measures.

Additional Resources: Textbook Chapter 13.1 pg. 852