5.2 Finding and Using Roots to Sketch Graphs of Polynomial Functions

- I can identify the number of roots of a polynomial
- I can find the roots of a polynomial by factoring
- I can use the roots to sketch a graph of the polynomial function without a graphing calculator

KEY IDEAS

*A polynomial with an odd degree always has at least one real solution (x-M+

*If (x - k) is a factor of the polynomial, then X = K is a solution of the polynomial equation.

Ex 1: Determine the number of solutions of the polynomial (Hint: What is the degree?)

a).
$$y = 2 - 3x^2 + 8x^5$$

b).
$$y = -2(x-6)^2 + 7$$

c).
$$y = 3x(x-4)(x+8)^2$$

5

2

4

Ex 2: For the factored polynomials, a)state the degree, b)find the solutions, and c)state the # of x-intercepts

a).
$$y = -6(x-7)(2x+1)$$

b).
$$y = 4x(x-9)^2(x+2)$$

c).
$$y = 9x^2(3x+5)(x^2+4)$$

b)
$$X = 7, -1/2$$

b)
$$X = 0, 9, 9, -2$$

$$b_1 \times = 0, 0, -\frac{5}{3}, 2i, -2i$$

Ex 3: a) State the degree and b) Find the solutions of the polynomials by factoring. (Look for a GCF first).

a).
$$y = 2x^3 - 8x^2 - 24x$$

Degree: 3 GCF: 2x

$$2x(x^{2}-4x-12)=0$$

$$2x(x-6)(x+2)=0$$

$$\sqrt{x}=0,6,-2$$

b).
$$y = 6x^4 - 21x^3 - 12x^2$$

Degree: $4 GCF: 3x^2$

$$3x^{2}(2x^{2}-7x-4)=0$$

$$\frac{3x^{2}(2x+1)(x-4)=0}{|x-4|} = 0$$

$$\frac{3x^{2}(2x+1)(x-4)=0}{|x-4|} = 0$$

Quick Check

State the degree of the polynomial and then find the solutions.

1.
$$y = -4x(3x-2)(x^2+5)$$

Degree:

$$\chi^2 = -5$$
 $\chi = \pm \sqrt{5}$

2.
$$y = 6x^3 - 21x^2 - 45x$$

Degree:
$$3$$
 GCF: $3\times$

$$3\times(2x^2-7\times-15)=0$$

$$3x(2x+3)(x-5) = 0$$

 $x = 0, -3/2, 5$

Sketching Graphs of Polynomial Functions (without a graphing calculator)

Recall:

Degree and leading coefficient determine the <u>evol</u> <u>behavior</u> and shape of the graph.

The <u>real</u> solutions correspond to the X-iN+evcepts of the graph.

Ex 4: Determine which could be the graph of y = -2x(x-3)(x+4). Explain your reasoning for each.

Hint- First find: Degree 3, LC -2 and Solutions $\times = 0, 3, -4$

d.

No-LC is neg

-correct x-int

5.2 Roots and Graphs

Ex 5: $y = -7(x-1)(x+3)^2$

- a). What is the degree? 3 b). LC -7
- c). Basic shape of graph_____ d). How many solutions?____3

- e). Find solutions X = 1, -3, -3
- f). How many x-intercepts? _____ g). Sketch the graph (-3 double)

Do and Discuss

1.
$$y = 4(x-2)(x+3)(x+8)(x^2+4)$$

- a). What is the degree? 5 b). LC 4
- c). Basic shape of graph _____ d). How many solutions?_____ 5
- e). Find solutions X = 2, -3, -8, 2i, -2i
- f). How many x-intercepts? g). Sketch the graph (real solutions)

- 2. $y = 8x(x-3)(x+5)^2$
- a). What is the degree? _____ b). LC_____
- c). Basic shape of graph _____ d). How many solutions?_____

f). How many x-intercepts? _____ g). Sketch the graph (-5 is double)

Additional Resources: Textbook Chapter 5.4 pg. 353 and 5.7 pg.379