Advanced AlgebraNameHomework 5.1PeriodPolynomial FunctionsPeriod

SHOW ALL WORK.

Complete Parts A & B OR Parts B & C

PART A:

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

1.
$$f(x) = 8 - x^2$$
 2. $f(x) = 6x + 8x^4 - 3$ **3.** $g(x) = \pi x^4 + \sqrt{6}$

Describe the end behavior of the graph of the polynomial function by completing these statements:

$$f(x) \to \underline{?}$$
 as $x \to -\infty$ and $f(x) \to \underline{?}$ as $x \to \infty$.
4. $f(x) = 10x^4$
5. $f(x) = -x^6 + 4x^3 - 3x$
6. $f(x) = -2x^3 + 7x - 4$

PART B:

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

7.
$$h(x) = x^3 \sqrt{10} + 5x^{-2} + 1$$

8. $h(x) = -\frac{5}{2}x^3 + 3x - 10$
9. $g(x) = 8x^3 - 4x^2 + \frac{2}{x}$

Describe the degree and the leading coefficient of the polynomial function whose graph is shown below.

Describe the end behavior of the graph of the polynomial function by completing these statements:

$$f(x) \to \underline{?}$$
 as $x \to -\infty$ and $f(x) \to \underline{?}$ as $x \to \infty$.
14. $f(x) = x^7 + 3x^4 - x^2$
15. $f(x) = 3x^{10} - 16x$
16. $f(x) = -6x^5 + 14x^2 + 20$

17.
$$f(x) = 0.2x^3 - x + 45$$
 18. $f(x) = 5x^8 + 8x^7$ **19.** $f(x) = -x^{273} + 500x^{271}$

20. Write a polynomial function f of degree 5 such that the end behavior of the graph of f is given by $f(x) \to +\infty$ as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to \infty$.

Find the y-intercept, degree, and leading coefficient, then sketch a graph of the polynomial function based on its end-behavior.

PART C:

27. Suppose $f(x) \to +\infty$ as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to \infty$. Describe the end-behavior of g(x) = -f(x).

28. Let $f(x) = x^3$ and $g(x) = x^3 - 2x^2 + 4x$.

x	f(x)	g(x)	$\frac{f(x)}{g(x)}$	8
10				ł
20				
50				
100				(
200				t

a. Complete the table

b. Use the numbers in the table to complete this statement:

As
$$x \to +\infty, \frac{f(x)}{g(x)} \to ?$$

c. Explain how the result from part b shows that the functions f and g have the same end behavior as $x \to +\infty$.

29. The weight y (in pounds) of a rainbow trout can be modeled by $y = 0.000304x^3$ where x is the length of the trout (in inches).

a. Write a function that relates the weight y and the length x of a rainbow trout if y is measured in kilograms and x is measured in centimeters. Use the fact that 1 kilogram ≈ 2.20 pounds and 1 centimeter ≈ 0.394 inch.

b. Graph the original function and the function from part **a** in the same coordinate plane. What type of transformation can you apply to the graph of $y = 0.000304x^3$ to produce the graph from part **a**?