SHOW ALL WORK.

Complete Parts A & B OR Parts B & C

PART A:

Solve the equation. Check your solution.

1.
$$\sqrt{5x+1} = 6$$

2.
$$\sqrt{3x+10} = 8$$

3.
$$\sqrt{9x} + 11 = 14$$

4.
$$\sqrt[3]{x} - 10 = -3$$

5.
$$\sqrt[3]{x-16} = 2$$

6.
$$\sqrt[3]{12x} - 13 = -7$$

7.
$$2x^{\frac{3}{2}} = 16$$

8.
$$\frac{1}{2}x^{\frac{5}{2}} = 16$$

9.
$$9x^{\frac{3}{5}} = 72$$

10.
$$\sqrt{4x+1} = \sqrt{x+10}$$

11.
$$(x-2)^4 + 3 = 19$$

12.
$$(x+1)^5 + 4 = 3$$

Describe and correct the error in simplifying the expression.

$$\sqrt[3]{x} + 2 = 4$$

13.
$$(\sqrt[3]{x} + 2)^3 = 4^3$$

 $x + 8 = 64$

$$x = 56$$

$$(x+7)^{\frac{1}{2}} = 5$$

14.
$$[(x+7)^{\frac{1}{2}}]^2 = 5$$

$$x + 7 = 5$$

$$x = -2$$

PART B:

Solve the equation. Check your solution.

15.
$$\sqrt{2x} - \frac{2}{3} = 0$$

16.
$$-2\sqrt{24x} + 13 = -11$$
 17. $8\sqrt{10x} - 7 = 9$

17.
$$8\sqrt{10x} - 7 = 9$$

18.
$$3\sqrt[3]{16x} - 7 = 17$$

18.
$$3\sqrt[3]{16x} - 7 = 17$$
 19. $-5\sqrt[3]{8x} + 12 = -8$

20.
$$\sqrt[3]{4x+5} = \frac{1}{2}$$

21.
$$(16x)^{\frac{3}{4}} + 44 = 556$$

21.
$$(16x)^{\frac{3}{4}} + 44 = 556$$
 22. $\frac{1}{7}(x+9)^{\frac{3}{2}} = 49$

23.
$$(x-5)^{\frac{5}{3}} - 73 = 170$$

24.
$$x-6=\sqrt{3x}$$

24.
$$x-6=\sqrt{3x}$$
 25. $\sqrt{21x+1}=x+5$

26.
$$\sqrt{44-2x} = x-10$$

27.
$$\sqrt{x^2+4} = x+5$$

27.
$$\sqrt{x^2+4} = x+5$$
 28. $\sqrt[3]{12x-5} - \sqrt[3]{8x+15} = 0$ **29.** $\sqrt{3x-8} + 1 = \sqrt{x+5}$

29.
$$\sqrt{3x-8}+1=\sqrt{x+5}$$

30.
$$\sqrt{x+2} = 2 - \sqrt{x}$$

30.
$$\sqrt{x+2} = 2 - \sqrt{x}$$
 31. $\sqrt{2x+3} + 2 = \sqrt{6x+7}$

32. A burning candle has a radius of r inches and was initially h_0 inches tall. After t minutes, the height of the candle has been reduced to h inches.

$$r = \sqrt{\frac{kt}{\pi(h_0 - h)}}$$

How long will it take for the entire candle to burn if its radius is 0.875 inches, its initial height is 6.5 inches, and k = 0.04? (k is a constant)

33. The length (in inches) of a standard nail can be modeled by $=54d^{\frac{3}{2}}$ where d is the diameter (in inches) of the nail. What is the diameter of a standard nail that is 3 inches long?

PART C:

Solve the equation. Check your solution.

34.
$$\sqrt{5x+6}+3=\sqrt{3x+3}+4$$

Solve the system of equations.

35.
$$5\sqrt{x} - 2\sqrt{y} = 4\sqrt{2}$$
$$2\sqrt{x} + 3\sqrt{y} = 13\sqrt{2}$$

36. You are trying to determine a truncated pyramid's height, which cannot be measured directly. The height h and the slant height of the truncated pyramid are related by the formula shown below.

$$= \sqrt{h^2 + \frac{1}{4}(b_2 - b_1)^2}$$

In the given formula, b_1 and b_2 are the side lengths of the upper and lower bases of the pyramid, respectively. If =5, b_1 =2, and b_2 =4, what is the height of the pyramid?

Homework 4.4

1.
$$x = 7$$

2.
$$x = 18$$

3.
$$x = 1$$

2.
$$x = 18$$
 3. $x = 1$ **4.** $x = 343$ **5.** $x = 24$ **6.** $x = 18$ **7.** $x = 4$

5.
$$x = 24$$

6.
$$x = 18$$

7.
$$x = 4$$

8.
$$x = 4$$

9.
$$x = 32$$

10.
$$x = 3$$

9.
$$x = 32$$
 10. $x = 3$ **11.** $x = 0,4$ **12.** $x = -2$

12.
$$x = -2$$

- 13. The first step should be subtracting 2 from both sides. x = 8.
- **14.** Both sides of the equation should be squared. x = 18.

15.
$$x = \frac{2}{9}$$

16.
$$x = 6$$

17.
$$x = \frac{2}{5}$$

18.
$$x = 32$$

19.
$$x = 8$$

15.
$$x = \frac{2}{9}$$
 16. $x = 6$ **17.** $x = \frac{2}{5}$ **18.** $x = 32$ **19.** $x = 8$ **20.** $x = -\frac{39}{7}$ **21.** $x = 256$

22.
$$x = 40$$

23.
$$x = 32$$

24.
$$x = 12$$

25.
$$x = 3, 8$$

26.
$$x = 14$$

22.
$$x = 40$$
 23. $x = 32$ **24.** $x = 12$ **25.** $x = 3,8$ **26.** $x = 14$ **27.** $x = -\frac{21}{10}$

28.
$$x = 5$$

29.
$$x = 4$$

28.
$$x = 5$$
 29. $x = 4$ **30.** $x = \frac{1}{4}$ **31.** $x = 3$ **32.** ≈ 391 min.

31.
$$x = 3$$

32.
$$\approx 391 \, \text{min.}$$

33.
$$\approx 0.15$$
 inches

34.
$$x = -1, 2$$
 35. $(8,18)$ **36.** ≈ 4.9