4.3 Rational Exponents

- I can rewrite expression in rational exponent form and radical form
- I can evaluate radicals and rational exponents without a calculator
- I can evaluate radicals and rational exponents with a calculator
- I can simplify expressions with rational exponents

Rational exponent notation:

 $a^{m/n}$

Radical notation:

Rewrite the expression using radical notation.

Examples: 45/2

Rewrite the expression using rational exponent notation.

Examples: $\sqrt[4]{-5}$

Evaluate with a calculator.

 $6^{1/3}$

5√<u>_43</u>

1,817 1,778 -2.297 -6,447

Quick Check:

Rewrite the expression using radical notation and evaluate with a calculator.

 $1.(-8)^{2/3}$

Rewrite the expression using rational exponent notation and evaluate with a calculator.

3.
$$\sqrt[5]{(-2)^4}$$

Base	2	3	4	5	6	7
Perfect Squares	4	9	16	25	36	49
Perfect Cubes	8	27	64	125	216	343
Perfect 4 th powers	16	81	256	625	1296	
Perfect 5 th powers	32	243	1024	3125		

To evaluate:

- Change to radical form.
- Take the root (if even).
- Take the power.

Evaluate without using a calculator.

Examples:
$$8^{-4/3}$$

$$\frac{1}{\sqrt{8}} = \frac{1}{2} = \frac{1}{16}$$

$$\frac{-125)^{-23}}{\sqrt{(-125)^2}} = \frac{1}{(-5)^2} = \frac{1}{(25)}$$

Evaluate without using a calculator.

Examples:
$$8^{-4/3}$$
 (-125)^{-2/3} (81)^{-3/2} $\sqrt[3]{(-64)^4}$ (25)

Use the properties of rational exponents to simplify the expression. Examples: $9^{1/2} \cdot 9^{3/4}$ $(7^{2/3} \cdot 5^{1/6})^3$

9 12+3/4
9 24+3/4 = 9 5/4

$$7^{23} \cdot 5^{16}$$

$$\frac{42x^4y^7}{6x^{3/2}y^{-3}z^7}$$

$$(36m^4n^{10})^{1/2}$$

$$\frac{42x^{4}y^{7}y^{3}}{6x^{3/2}z^{7}}$$

$$\frac{7x^{7}y^{10}}{x^{3/2}z^{7}} = \frac{7x^{3/2}y^{10}}{7x^{3/2}z^{7}}$$

$$\frac{3a^{6}}{4x^{9}}$$

$$x^{1/3}(\sqrt[3]{x} \cdot y^3)^4$$
 $x^{1/3}(x^{1/2} \cdot y^3)^4$
 $x^{1/3}(x^{1/2} \cdot y^3)^4$
 $x^{1/3}(x^{1/2} \cdot y^3)^4$

Tips for simplifying:

- -Look for something that is the same
- If bases are the same, combine the powers. Ex. $3^{1/2} \cdot 3^{2/3} = 3^{1/2+2/3}$
- If powers are the same, combine the Ex. 31/2.51/2=151/2 bases.
- -- Change radicals to rational exponents
- -If problem seems too complex, think of a simpler example to know what to do with the exponents.

Ex.
$$x^{3/4} \cdot x^{2/3}$$
 Think $x^a \cdot x^b = x^{a+b}$
Then $\frac{3}{4} + \frac{2}{3} = \frac{9}{12} + \frac{8}{12} = \frac{17}{12}$
so $x^{3/4} \cdot x^{2/3} = x^{17/12}$

Do & Discuss:

 $\left(\frac{a^{k}}{b^{q}}\right)^{1/3} = \frac{a^{2}}{13}$

5.
$$(6^6 \cdot 5^6)^{-1/6}$$

$$7. \frac{3x^{1/8}y}{(16y)^{-1/4}}$$

16-1/4y-1/4 = 3 x 1/2 5/1