SHOW ALL WORK.

Complete Parts A & B OR Parts B & C

PART A:

Use the Quadratic Formula to solve the equation.

1.
$$z^2 + 15z + 24 = -32$$

2.
$$x^2 - 4x - 5 = 0$$

3.
$$x^2 - 5x + 10 = 4$$

1.
$$z^2 + 15z + 24 = -32$$
 2. $x^2 - 4x - 5 = 0$ **3.** $x^2 - 5x + 10 = 4$ **4.** $m^2 + 5m - 99 = 3m$

Find the Discriminant. Then give the number and type of solutions to the equation.

$$5. \quad x^2 - 8x + 16 = 0$$

6.
$$s^2 + 7s + 11 = 0$$

5.
$$x^2 - 8x + 16 = 0$$
 6. $s^2 + 7s + 11 = 0$ **7.** $8p^2 + 8p + 3 = 0$

PART B:

Use the Quadratic Formula to solve the equation.

8.
$$s^2 - s - 3 = s$$

9.
$$r^2 - 4r + 8 = 5r$$

10.
$$3x^2 + 7x - 24 = 13x$$

11.
$$45x^2 + 57x + 1 = 5$$

12.
$$5p^2 + 40p + 100 = 25$$
 13. $9n^2 - 42n - 162 = 21n$

13.
$$9n^2 - 42n - 162 = 21n$$

14.
$$-3y^2 = 6y - 10$$

Find the Discriminant. Then give the number and type of solutions to the equation.

15.
$$-4w^2 + w - 14 = 0$$

16.
$$5x^2 + 20x + 21 = 0$$

17.
$$8z-10=z^2-7z+3$$

Solve the equation using any method.

18.
$$16t^2 - 7t = 17t - 9$$

18.
$$16t^2 - 7t = 17t - 9$$
 19. $7x - 3x^2 = 85 + 2x^2 + 2x$ **20.** $4(x - 1)^2 = 6x + 2$

20.
$$4(x-1)^2 = 6x + 2$$

Describe and correct the error in solving the equation.

21.

$$x^2 + 6x + 8 = 2$$

$$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(8)}}{2(1)}$$

$$x = \frac{-6 \pm 2}{2}$$

$$x = -2, -4$$

Tell whether the discriminant of the equation for each corresponding graph is positive, negative, or zero.

25. The number S of ant species in Kyle Canyon, Nevada can be modeled by the function $S = -0.000013E^2 + 0.042E - 21$ where E is the elevation (in meters). Predict the elevation(s) at which you would expect to find 10 species of ants.

PART C:

Use the Quadratic Formula to solve the equation.

26.
$$3-8v-5v^2=2v$$

27.
$$7x-5+12x^2=-3x$$

- **28.** For the quadratic equation $ax^2 + bx + c = 0$ with two real solutions, show that the mean of the solutions is
- $-\frac{b}{2a}$. How is this fact related to the symmetry of the graph of $y = ax^2 + bx + c$?

29. What is the value of c if the discriminant of $2x^2 + 5x + c = 0$ is -23?

30. Use the discriminant to find all values for c for which the equation $x^2 - 4x + c = 0$ has a) two real solutions, b) one real solution, and c) no real solutions.

31. Write a quadratic equation in the form $ax^2 + bx + c = 0$ such that c = 4 and the equation has the solutions -4 and 3.